The intrinsic defect structure of exfoliated MoS2 single layers revealed by Scanning Tunneling Microscopy

نویسندگان

  • Péter Vancsó
  • Gábor Zsolt Magda
  • János Pető
  • Ji-Young Noh
  • Yong-Sung Kim
  • Chanyong Hwang
  • László P. Biró
  • Levente Tapasztó
چکیده

MoS2 single layers have recently emerged as strong competitors of graphene in electronic and optoelectronic device applications due to their intrinsic direct bandgap. However, transport measurements reveal the crucial role of defect-induced electronic states, pointing out the fundamental importance of characterizing their intrinsic defect structure. Transmission Electron Microscopy (TEM) is able to image atomic scale defects in MoS2 single layers, but the imaged defect structure is far from the one probed in the electronic devices, as the defect density and distribution are substantially altered during the TEM imaging. Here, we report that under special imaging conditions, STM measurements can fully resolve the native atomic scale defect structure of MoS2 single layers. Our STM investigations clearly resolve a high intrinsic concentration of individual sulfur atom vacancies, and experimentally identify the nature of the defect induced electronic mid-gap states, by combining topographic STM images with ab intio calculations. Experimental data on the intrinsic defect structure and the associated defect-bound electronic states that can be directly used for the interpretation of transport measurements are essential to fully understand the operation, reliability and performance limitations of realistic electronic devices based on MoS2 single layers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elasticity of MoS2 Sheets by Mechanical Deformation Observed by in Situ Electron Microscopy

MoS2 has been the focus of extensive research due to its potential applications. More recently, the mechanical properties of MoS2 layers have raised interest due to applications in flexible electronics. In this article, we show in situ transmission electron microcsopy (TEM) observation of the mechanical response of a few layers of MoS2 to an external load. We used a scanning tunneling microscop...

متن کامل

Moiré-related in-gap states in a twisted MoS2/graphite heterojunction

This report presents a series of low-temperature (4.5 K) scanning tunneling microscopy and spectroscopy experimental results on monolayer MoS2 deposited on highly oriented pyrolytic graphite using chemical vapor deposition. To reveal the detailed connection between atomic morphology and conductivity in twisted MoS2/graphite heterojunctions, we employ high-sensitivity tunneling spectroscopy meas...

متن کامل

Control of radiation damage in MoS(2) by graphene encapsulation.

Recent dramatic progress in studying various two-dimensional (2D) atomic crystals and their heterostructures calls for better and more detailed understanding of their crystallography, reconstruction, stacking order, etc. For this, direct imaging and identification of each and every atom is essential. Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) are...

متن کامل

Weakly Trapped, Charged, and Free Excitons in Single-Layer MoS2 in the Presence of Defects, Strain, and Charged Impurities.

Few- and single-layer MoS2 host substantial densities of defects. They are thought to influence the doping level, the crystal structure, and the binding of electron-hole pairs. We disentangle the concomitant spectroscopic expression of all three effects and identify to what extent they are intrinsic to the material or extrinsic to it, i.e., related to its local environment. We do so by using di...

متن کامل

Fabrication of single-layer MS2 (M=Mo, W) nanosheets using Li battery setup

Lithium intercalation is a convenient method to prepare few-layer and single-layer MS2 (M=Mo, W) nanosheets. This method is, however, very time-consuming (few days) and it is difficult to control the reaction parameters. To overcome these drawbacks, we have proposed a method to use an Li battery set-up to significantly reduce the reaction time (few hours) and electrochemically intercalate lithi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016